

Basic information
Name 
BABA Yoshihiro 
Sex 
Male 
Birth Day 

Office 

Tel No 

Fax No 
0774656801 
EMail Addr Public 
ybaba@mail.doshisha.ac.jp 
Background information of researcher
From 1994 to 1999, he was involved in research on lightning surges. He has been involved in development of numerical electromagnetic analysis methods since 2000.
From April 1999 to March 2001, he was a Research Associate of the Department of Electrical Engineering, Doshisha University, Kyoto, Japan. From April 2001 to March 2005, he was a Lecturer there. From April 2003 to August 2004, he was a Visiting Scholar at the University of Florida on Sabbatical Leave from Doshisha University.
Research Fields by GrantsinAid for Scientific Research Category 

Lightning, Electromagnetic Compatibility, Electromagnetic Pulse, Electromagnetic Field Analysis, High Voltage, Infrastructure
Academic Society Affiliations 

Research Results (papers and notes) 

 6.Review of engineering models of the lightning return stroke and their application to lightning electromagnetic pulse calculations IEEJ Trans. PE 128 5 785794 2008
 7.Thin wire modeling for FDTD electromagnetic calculations in the twodimensional cylindrical coordinate system IEEJ Trans. PE 128 1 263269 2008
 8.Improvement of an advectionequationbased absorbing boundary condition for FDTD calculations of electromagnetic fields and surges IEEJ Trans. PE 128 1 285290 2008
 9.FDTD analysis of the unit step response of a circuit measuring chopped lightning impulse voltages IEEE Trans. Power Delivery 23 1 502503 2008
 10.Applications of electromagnetic models of the lightning return stroke IEEE Trans. Power Delivery 23 2 800811 2008
 11.On the choice between transmission line equations and full wave Maxwell's equations for transient analysis of buried wires IEEE Trans. Electromagnetic Compatibility 50 2 347357 2008
 12.Modification on a thin wire representation for FDTD calculations in nonsquare grids IEEE Trans. Electromagnetic Compatibility 50 2 427431 2008
 13.FDTD simulation of a horizontal grounding electrode and modeling of its equivalent circuit IEEE Trans. Electromagnetic Compatibility 48 4 817825 2006
 14.Measurement of transient horizontal electric fields using two vertical conducting probes IEEJ Trans. PE 126B 11 11711177 2006
 15.numerical analyses using the method of moments IEEJ Journal 126 10 664671 2006
 16.Measurement of frequencydependent conductivity and permittivity of a soil using two parallel electrodes IEEJ Trans. PE 112B 9 954955 2006
 17.Voltages induced on an overhead wire by lightning strikes to a nearby tall grounded object IEEE Trans. Electromagnetic Compatibility 48 1 212224 2006
 18.On the interpretation of ground reflections observed in smallscale experiments simulating lightning strikes to towers IEEE Transactions Electromagnetic Compatibility 47 3 533542
 19.On the mechanism of attenuation of current waves propagating along a vertical perfectly conducting wire above ground: application to lightning IEEE Transactions on Electromagnetic Compatibility 47 3 521532 2005
 20.Evaluation of parameters of lossy medium for surge analysis of grounding electrodes IEEJ Trans. Power and Energy 125B 6 626627 2005
 21.Reproduction of features of electromagnetic field waveforms associated with lightning return stroke IEEJ Transactions on Power and Energy 125B 5 544550 2005
 22.Lightning electromagnetic environment in the presence of a tall grounded strike object Journal of Geophysical Research 110 D9 2005
 23.Modeling of thin wires in a lossy medium for FDTD simulations IEEE Transactions on Electromagnetic Compatibility 47 1 5460 2005
 24.On the use of lumped sources in lightning return stroke models Journal of Geophysical Research 110 3 2005
 25.Transient analysis of a cable with lowconducting layers by a finitedifference timedomain method IEEE Transactions on Electromagnetic Compatibility 46 3 488493 2004
 26.Numerical electromagnetic field analysis of transient induced voltages associated with lightning to a tall structure Journal of Electrostatics 60 2 141147 2004
 27.Reproduction of lightning electromagnetic field waveforms by engineering model of return stroke IEEE Transactions on Electromagnetic Compatibility 46 1 130133 2004
 28.Numerical electromagnetic field analysis of unit step response characteristics of impulse voltage measuring systems IEEE Transactions on Power Delivery 19 1 2127 2004
 29.On the transmission line model for lightning return stroke representation Geophysical Research Letters 30 24 2003
 30.Numerical analysis on wave propagation characteristics on a buried horizontal conductor by an FDTD method IEEJ Transactions on Power and Energy 123 11 13191327 2003
 31.Numerical electromagnetic analysis of lightninginduced voltage over ground of finite conductivity IEEE Transactions on Electromagnetic Compatibility 45 4 651656 2003
 32.Derivation of a semiconducting layer impedance and its effect on wave propagation characteristics on a cable IEE Proceedings on Generation, Transmission and Distribution 150 4 434440 2003
 33.Highaccuracy analysis of surges on a slanting conductor and a cylindrical conductor by an FDTD method IEEJ Transactions on Power and Energy 123 6 725733 2003
 34.Characteristics of electromagnetic returnstroke models IEEE Transactions on Electromagnetic Compatibility 45 1 129135 2003
 35.Numerical electromagnetic field analysis of archorn voltages during a backflashover on a 500 kV twincircuit line IEEE Transactions on Power Delivery 18 1 207213 2003
 36.Lightning returnstroke model incorporating current distortion IEEE Transactions on Electromagnetric Compatibility 44 3 476478 2002
 37.Unit step response of a measuring circuit for choppedlightning impulse voltages studied by numerical electromagnetics code IEEJ Transactions on Power and Energy 121 11 15941599 2001
 38.A transient analysis of a cable with a twolayer conductor by FDTD method IEEJ Transactions on Power and Energy 121 11 15941599 2001
 39.Numerical electromagnetic field analysis of lightning current in tall structures IEEE Transactions on Power Delivery 16 2 324328 2001
 40.Numerical electromagnetic field analysis of lightning induced voltages by moment method IEEJ Transactions on Power and Energy 120 10 13301335 2000
 41.Unit step response characteristics of shielded resistance divider studied by numerical electromagnetic code IEEJ Transactions on Power and Energy 120 10 13091314 2000
 42.Numerical electromagnetic field analysis on lightning surge response of tower with shield wire IEEE Transactions on Power Delivery 15 3 10101015 2000
 43.Tower models for fastfront lightning currents IEEJ Transactions on Power and Energy 120 1 1823 2000
 44.Numerical electromagnetic field analysis on measuring methods of tower surge impedance IEEE Transactions on Power Delivery 14 2 630635 1999
 45.Lightning surge characteristics of power transmission line studied by numerical electromagnetic code IEEJ Transactions on Power and Energy 118 9 10281034 1998
 46.Surge impedance of independent transmission tower characterized by direct method IEEJ Transactions on Power and Energy 117 6 845850 1997
 47.Numerical electromagnetic field analysis of tower surge response IEEE Transactions on Power Delivery 12 1 483488 1996
 48.Application of the numerical electromagnetic code to analysis of tower surge response IEEJ Transactions on Power and Energy 116 7 873878 1996
 49.N. Okazima, Y. Baba, N. Nagaoka, A. Ametani, K. Tenma, and T. Shimomura, Propagation characteristics of power line communication signals along a power cable having semiconducting layers, IEEE Trans. Electromagnetic Compatibility, vol. 52, no. 3, pp. 756759 (20108) N. Okazima, Y. Baba, N. Nagaoka, A. Ametani, K. Tenma, and T. Shimomura IEEE Trans. Electromagnetic Compatibility 52 3 756759 2010
 50.K. Okubo, S. Nishimura, Y. Goda, and Y. Baba, Novel development of power transformation technology supporting electric power and energy K. Okubo, S. Nishimura, Y. Goda, and Y. Baba IEEJ Trans. Power and Energy 132 5 388391 2012
 51.N. Okazaima, S. Yuda, Y. Baba, N. Nagaoka, and A. Ametani, A TLMbased surge analysis considering lumpedcircuit elements, vol. 130, no. 6, pp. 559565 (20106) N. Okazaima, S. Yuda, Y. Baba, N. Nagaoka, and A. Ametani IEEJ Trans. Power and Energy 130 6 559565 2010
 52.A. Ametani, M. Mishitsuji, N. Nagaoka, Y. Baba, and S. Okabe, On the equivalence of a conducting plate in a laboratory experiment to a real earth, IEEE Trans. Electromagnetic Compatibility, vol. 52, no. 3, pp. 691697 (20108) A. Ametani, M. Mishitsuji, N. Nagaoka, Y. Baba, and S. Okabe IEEE Trans. Electromagnetic Compatibility 52 3 691697 2010
 53.P. Yutthagowith, A, Ametani, N. Nagaoka, and Y. Baba, Application of the partial element equivalent circuit method to tower surge response calculations, IEEJ Trans. EEE, vol. 6, no. 4, pp. 324330 (20117) P. Yutthagowith, A, Ametani, N. Nagaoka, and Y. Baba IEEJ Trans. Power and Energy 6 4 324330 2011
 54.P. Yutthagowith, A. Ametani, N. Nagaoka, and Y. Baba, Application of the partial element equivalent circuit method to analysis of transient potential rises in grounding systems, IEEE Trans. Electromagnetic Compatibility, vol. 53, no. 3, pp. 726736 (20118) P. Yutthagowith, A. Ametani, N. Nagaoka, and Y. Baba IEEE Trans. Electromagnetic Compatibility 53 3 726736 2011
 55.M. Nishitsuji, A. Ametani, N. Nagaoka, and Y. Baba, Modeling method of a real earth in an experiment on a conductor plate, IEEJ Trans. Power and Energy, vol. 131, no. 9, pp. 764769 (20119) M. Nishitsuji, A. Ametani, N. Nagaoka, and Y. Baba IEEJ Trans. Power and Energy 131 9 764769 2011
 56.P. Yutthagowith, A. Ametani, N. Nagaoka, and Y. Baba, Application of a frequencydomain partial element equivalent circuit method to tower surge response calculations, J. Int. Council on Electrical Engineering, vol. 1, no. 4, pp. 474480 (201110) P. Yutthagowith, A. Ametani, N. Nagaoka, and Y. Baba J. Int. Council on Electrical Engineering 1 4 474480 2011
 57.Y. Baba, and V. A. Rakov: Simulation of corona at lightningtriggering wire: Current, charge transfer, and fieldreduction effect, J. Geophys. Res., vol. 116, no. D21115, doi:10.1029/2011JD016341 (201111) Y. Baba, and V. A. Rakov J. Geophys. Res. 116 D21115 2011
 58.A. Shoory, F. Vega, P. Yutthagowith, F. Rachidi, M. Rubinstein, Y. Baba, V. A. Rakov, K. Sheshyekani, and A. Ametani, On the mechanism of current pulse propagation along conical structures: Application to tall towers struck by lightning, IEEE Trans. Electromagnetic Compatibility, vol. 54, no. 2, pp. 332342 (20124) A. Shoory, F. Vega, P. Yutthagowith, F. Rachidi, M. Rubinstein, Y. Baba, V. A. Rakov, K. Sheshyekani, and A. Ametani IEEE Trans. Electromagnetic Compatibility 54 2 332342 2012
 59.H. Oka, A. Tamano, Y. Baba, M. Ishii, N. Nagaoka, and A. Ametani, Step response analysis of an impulse voltage measuring system using the FDTD method, IEEJ Trans. Power and Energy, vol. 132, no. 5, pp. 507514 (20125) H. Oka, A. Tamano, Y. Baba, M. Ishii, N. Nagaoka, and A. Ametani IEEJ Trans. Power and Energy 132 5 507514 2012
 60.S. Yuda, Y. Baba, N. Nagaoka, and A. Ametani, A TLMbased surge analysis of grounding electrodes, IEEJ Trans. Power and Energy, vol. 132, no. 6, pp. 604610 (20126) S. Yuda, Y. Baba, N. Nagaoka, and A. Ametani IEEJ Trans. Power and Energy 132 6 604610 2012
 61.T. H. Thang, Y. Baba, N. Nagaoka, A. Ametani, J. Takami, S. Okabe, and V. A. Rakov, A simplified model of corona discharge on an overhead wire for FDTD computations, IEEE Trans. Electromagnetic Compatibility, vol. 54, no. 3, pp. 585593 (20126) T. H. Thang, Y. Baba, N. Nagaoka, A. Ametani, J. Takami, S. Okabe, and V. A. Rakov IEEE Trans. Electromagnetic Compatibility 54 3 585593 2012
 62.H. Sumitani, T. Takeshima, Y. Baba, N. Nagaoka, A. Ametani, J. Takami, S. Okabe, and V. A. Rakov, 3D FDTD computation of lightninginduced voltages on an overhead twowire distribution line, IEEE Trans. Electromagnetic Compatibility, vol. 54, no. 5, pp. 11611168 (20126) H. Sumitani, T. Takeshima, Y. Baba, N. Nagaoka, A. Ametani, J. Takami, S. Okabe, and V. A. Rakov IEEE Trans. Electromagnetic Compatibility 54 5 11611168 2012
 63.T. H. Thang, Y. Baba, N. Nagaoka, A. Ametani, J. Takami, S. Okabe, and V. A. Rakov, FDTD simulation of lightning surges on overhead wires in the presence of corona discharge, IEEE Trans. Electromagnetic Compatibility, vol. 54, no. 6, pp. 12341243 (201212) T. H. Thang, Y. Baba, N. Nagaoka, A. Ametani, J. Takami, S. Okabe, and V. A. Rakov IEEE Trans. Electromagnetic Compatibility 54 6 12341243 2012
 64.P. Yutthagowith, A. Ametani, F. Rachidi, N. Nagaoka, and Y. Baba, Application of a partial element equivalent circuit method to lightning surge analyses, Electric Power Systems Research, vol. 94, pp. 3037 (20131) P. Yutthagowith, A. Ametani, F. Rachidi, N. Nagaoka, and Y. Baba Electric Power Systems Research 94 3037 2013
 65.K. Kajita, K. Miyagawa, Y. Baba, N. Nagaoka, and A. Ametani, Applicatio of the typeC constrained interpolation profile method to lightning lectromagnetic field analyses, IEEJ Trans. Power and Energy,vol. 133, no. 1, pp. 106113 (20131) K. Kajita, K. Miyagawa, Y. Baba, N. Nagaoka, and A. Ametani IEEJ Trans. Power and Energy 133 1 106113 2013
 66.H. Oka, Y. Baba, M. Ishii, N. Nagaok, and A. Ametani, Parametric study on unit step responses of. impulse voltage measuring systems based on FDTD simulations, IEEE Trans. Power Delivery, vol. 28, no. 1, pp. 376382 (20131) H. Oka, Y. Baba, M. Ishii, N. Nagaok, and A. Ametani IEEE Trans. Power Delivery 28 1 376382 2013
 67.S. Yuda, S. Sawaki, Y. Baba, N. Nagaoka, and A. Ametani, Application of the TLM method to transient simulations of a conductor system with a lossy ground: grounding electrodes and an overhead wire, IEEE Trans. Electromagnetic Compatibility, IEEE Trans. Electromagnetic Compatibility, vol. 55, no. 1, pp. 175182 (20132) S. Yuda, S. Sawaki, Y. Baba, N. Nagaoka, and A. Ametani IEEE Trans. Electromagnetic Compatibility 55 1 175182 2013
 68.J. Takami, T. Tsuboi, K. Yamamoto, S. Okabe, and Y. Baba, Lightning surge characteristics on inclined incoming line to substation based on reducedscale model experiment, IEEE Trans. Dielectrics and Insulation, vol. 20, no. 3, pp. 739746 (20136) J. Takami, T. Tsuboi, K. Yamamoto, S. Okabe, and Y. Baba IEEE Trans. Dielectrics and Insulation 20 3 739746 2013
 69.M. Nishitsuji, A. Ametani, N. Nagaoka, and Y. Baba, Influence of a measuring wire on transient measurements in a scaledown vertical conductor experiment, IEEJ Trans. Power and Energy, vol. 133, no. 6, pp. 555561 (20136) M. Nishitsuji, A. Ametani, N. Nagaoka, and Y. Baba IEEJ Trans. Power and Energy 133 6 555561 2013
 70.T. H. Thang, Y. Baba, N. Nagaoka, A. Ametani, N. Itamoto, and V. A. Rakov, FDTD simulation of insulator voltages at a lightningstruck tower considering groundwire corona, IEEE Trans. Power Delivery, vol. 28, no. 3, pp. 16351642 (20137) T. H. Thang, Y. Baba, N. Nagaoka, A. Ametani, N. Itamoto, and V. A. Rakov IEEE Trans. Power Delivery 28 3 16351642 2013
 71.T. H. Thang, Y. Baba, N. Nagaoka, A. Ametani, N. Itamoto, and V. A. Rakov, FDTD simulations of corona effect on lightninginduced voltages, IEEE Trans. Electromagnetic Compatibility, vol. 56, no. 1, pp. 168176 (20142) T. H. Thang, Y. Baba, N. Nagaoka, A. Ametani, N. Itamoto, and V. A. Rakov IEEE Trans. Electromagnetic Compatibility 56 1 168176 2014
 72.J. Takami, T. Tsuboi, K. Yamamoto, S. Okabe, Y. Baba, and A. Ametani, Lightning surge response of a doublecircuit transmission tower with incoming lines to a substation through FDTD simulation, IEEE Trans. Dielectrics and Insulation, vol. 21, no. 1 , pp. 96104 (20142) J. Takami, T. Tsuboi, K. Yamamoto, S. Okabe, Y. Baba, and A. Ametani IEEE Trans. Dielectrics and Insulation 21 1 96104 2014
 73.K. Kajita, Y. Baba, N. Nagaoka, A. Ametani, J. Takami, and A. Ametani, CIPbased computation of lightning electromagnetic pulses, IEEJ Trans. Power and Energy, vol. 134, no. 3, pp. 210217 (20143) K. Kajita, Y. Baba, N. Nagaoka, A. Ametani, J. Takami, and A. Ametani IEEJ Trans. Power and Energy 134 3 210217 2014
 74.N. Shibata, M. Aoki, Y. Baba, N. Nagaoka, A. Ametani, and N. Itamoto, FDTD simulation of LEMPs considering ground geometry and grounded structure, IEEJ Trans. Power and Energy, vol. 134, no. 3, pp. 267272 (20143) N. Shibata, M. Aoki, Y. Baba, N. Nagaoka, A. Ametani, and N. Itamoto IEEJ Trans. Power and Energy 134 3 267272 2014
 75.Y. Kubo, N. Nagaoka, Y. Baba, and A. Ametani, Calculation of a transient linetoground voltage of a solar panel caused by a direct and an indirect lightning by means of circuit analysis method, IEEJ Trans. Power and Energy, vol. 134, no. 3, pp. 248255 (20143) Y. Kubo, N. Nagaoka, Y. Baba, and A. Ametani IEEJ Trans. Power and Energy 134 3 248255 2014
 76.Y. Yamamoto, K. Kawamura, A. Ametani, N. Nagaoka, and Y. Baba, A surge analysis in a system connected with dispersive power sources, IEEJ Trans. Power and Energy, vol. 134, no. 3, pp. 230235 (20143) Y. Yamamoto, K. Kawamura, A. Ametani, N. Nagaoka, and Y. Baba IEEJ Trans. Power and Energy 134 3 230235 2014
 77.An improved thin wire representation for FDTD computations IEEE Trans. Antennas and Propagation 56 10 32483253 2008
 78.FDTD analysis of the current distribution within the grounding system for a wind turbine generation tower struck by lightning IEEJ Trans. PE 128 11 13931400 2008
 79.An improvement of a thin wire representation for FDTD electromagnetic and surge calculations IEEJ Trans. PE 129 1 198204 2009
 80.Application of the 3D TLM method to analyzing lightning electromagnetic fields and surges IEEE Trans. PE 129 7 948956 2009
 81.Representation of an arbitraryradius wire for FDTD calculations in the 2D cylindrical coordinate system IEEE Trans. Electromagnetic Compatibility 50 4 10141018 2008
 82.On theoretical formulae for the characteristic impedance of a vertical conductor IEEJ Trans. PE 129 3 469470 2009
 83.Electric and magnetic fields predicted by different electromagnetic models of the lightning return stroke versus measured fields IEEE Trans. Electromagnetic Compatibility 51 3 479483 2009
 84.An investigation of earthreturn impedance between overhead and underground conductors and its approximation IEEE Trans. Electromagnetic Compatibility 51 3 860867 2009
 85.FDTD electromagnetic analysis of a wind turbine generator tower struck by lightning IEEJ Trans. PE 129 10 11811187 2009
 86.Experimental and analytical studies on lightning surge response of 500kV transmission tower IEEE Trans. Power Delivery 24 4 22322239 2009
 87.Lightning induced voltage over lossy ground by a hybrid electromagneticcircuit model method with CoorayRubinstein formula IEEE Trans. Electromagnetic Compatibility 51 4 975985 2009
 88.Influence of a current lead wire and a voltage reference wire to a transient voltage on a vertical conductor IEEJ Trans. EEE 5 1 17 2010
 89.A TLMbased surge analysis considering lumpedcircuit elements IEEJ Trans. PE 130 6 559565 2010
 90.Influence of a measuring system to a transient voltage on a vertical conductor IEEJ Trans. EEE 5 2 221228 2010
 91.Review of electromagnetic models of the lightning return stroke IEEJ Trans. PE 129 9 11391151 2009
 92.Review of recent researches related to lightning to tall structures IEEJ Trans. PE 130 8 769779 2010
 93.Propagation characteristics of power line communication signals along a power cable having semiconducting layers IEEE Trans. Electromagnetic Compatibility 52 3 756759 2010
 94.On the equivalence of a conducting plate in a laboratory experiment to a real earth IEEE Trans. Electromagnetic Compatibility 52 3 691697 2010
 95.Application of the partial element equivalent circuit method to tower surge response calculations IEEJ Trans. EEE 6 4 324330 2011
 1.Y. Baba, and V. A. Rakov, Electromagnetic Computation Methods for Lightning Surge Protection Studies Wiley 315 2016
 2.Y. Baba, English Manners for Electrical and Electrinics Engineering Students IEEJ 236 2013
 3.A. Ametani, N. Nagaoka, Y. Baba, and T. Ohno, Power System Transients: Theory and Applications CRC Press 2013
 4.Numerical Analysis of Power System Transients and Dynamics (Edited by A. Ametani) , Chapter 6, pp. 213246 IET 2015
 5.Lightning Electromagnetics (Edited by V. Cooray), Chapter 8, pp. 263313 IET 2012
Research Results (oral/poster presentations) 

Research Results (lectures) 

Research Results (other activities) 

Research Results (patents) 

Research cooperation among industry, academia and government 

Research Performance by GrantsinAid for Scientific Research 

Research Performance by Various Research Funding 

